sodium acetate by the same method gave a molar ratio of deuterated to non-deuterated acetate ion of $1/_{27}$, corresponding well with the $1/_{28}$ naturally occurring.

The total acetate ion present in the same reaction product as that used for hydrolysis with deuterium oxide was determined as follows:

A weighed sample (approx. 10 g.) of the reaction product was hydrolyzed and dissolved in 500 ml. of water. A 10-ml. aliquot was taken and added slowly to phosphoric acid heated to 140°, and the acetic acid formed was collected by steam distillation. Titration with sodium hydroxide gave the acetate ion content of the original sample.

The sodium α -sodioacetate content of the fusion product of sodium amide and sodium acetate was calculated from the total acetate ion content and the ratio of sodium α -sodioacetate to unreacted sodium acetate. Thermal Stability.—The thermal stability of the α -sodio compound was determined by placing a small sample of the material in a 20-ml. test-tube through which a slow current of nitrogen was passed. The tube was placed in an oil-bath and the temperature gradually raised. Gas flow rates to and from the tube were observed, as well as the appearance of the material in the tube.

The material appeared stable until a temperature of 280° was reached. Decomposition became quite rapid at 295° .

Acknowledgment.—The authors are indebted to Dr. H. C. Brown of Purdue University for the suggestion of deuterium oxide as an analytical reagent for sodium α -sodioacetate.

BATON ROUGE 1, LA.

[Contribution No. 121 from the Central Research Department of the Minnesota Mining and Manufacturing Co.]

High Temperature, Vapor Phase Reactions of Some Fluorocarbon Derivatives with Oxidizing Agents

By W. A. Severson and T. J. Brice

Received November 30, 1957

Vapor phase, high temperature $(450-650^\circ)$ reactions of perfluoroalkanesulfonyl fluorides or fluorocarbon derivatives having the structures R_tCF_2X (X = H, Cl, Br. I) with oxidizing agents, principally NO₂, were carried out. NO₂ gave, in several cases, good yields of perfluoroalkanecarboxylic acid fluorides; the products usually were isolated as the acids because of hydrolysis and separation problems. R_tCF_2H compounds require a sensitizing agent in addition to NO₂ before the reaction to form the acid fluoride proceeds; chlorine and bromine were successfully used as sensitizing agents.

High temperature, vapor phase oxidation reactions of three classes of fluorocarbon derivatives were studied; these classes are (1) perfluoroalkanesulfonyl fluorides, (2) fluorocarbon derivatives containing $-CF_2H$ groups and (3) fluorocarbon halides. The principal reaction studied was that with NO₂, although other oxidizing agents were used with sulfonyl fluorides. The reaction of the $-CF_2H$ derivatives required chlorine or bromine as a sensitizing agent before reaction with NO₂ would proceed.

The perfluoroalkanesulfonyl fluorides used were prepared in good yield by electrochemical fluorination of hydrocarbon sulfonyl halides in liquid hydrogen fluoride as described by Brice and Trott.¹

Perfluoroalkyl or chloroperfluoroalkyl compounds containing, as a potentially reactive group, a terminal $-CF_2H$ group, are well known to be rather inert chemically and have not been extensively studied. They can be converted to the corresponding $-CF_3$, $-CF_2Cl$ or $-CF_2Br$ derivatives by high temperature thermal halogenation or by ultraviolet light catalyzed halogenation. Thus C_3F_7H can be converted to C_3F_7Br or $C_3F_7Cl.^2$ No other well-controlled chemical reactions have been reported.

These $-CF_2H$ -containing compounds can be obtained by several methods, as, for example, by electrochemical fluorination of organic compounds in anhydrous hydrogen fluoride³ or by the pyrolysis of CF_2HCL^4 The electrochemical process

T. J. Brice and P. W. Trott, U. S. Patent 2,732,398, January 24, 1956; Abstracts of 126th A.C.S. Meeting, Sept., 1954, p. 42M; see also T. Gramstad and R. N. Haszeldine, *J. Chem. Soc.*, 173 (1956).
T. J. Brice, W. H. Pearlson and J. H. Simons, THIS JOURNAL,

(3) J. H. Simons, et al., Trans. Electrochem. Soc., 95, 47 (1949).

yields compounds such as $F(CF_2)_n CF_2H$, while the CF_2HCl pyrolysis yields $Cl(CF_2)_n CF_2H$. An alternate convenient method for preparing the compounds $F(CF_2)_n CF_2H$ is the pyrolysis in ethylene glycol of the salt $F(CF_2)_n CF_2CO_2Na.^5$ This method was used in the present work.

Fluorocarbon halides having the structure F- $(CF_2)_n CF_2 X$, where X = Br or I, were prepared by the reactions of silver salts of carboxylic acids with the proper halogen.

General Procedure.—The general procedure was to pass the fluorocarbon derivative and the oxidizing agent in the vapor phase through an unpacked tube. The tubes were made of resistant metals such as nickel, nickel alloys, stainless steel or platinum; nickel tubes usually were used. The products were collected in a series of cold traps, then separated and identified.

Reactions of Perfluoroalkanesulfonyl Fluorides with NO or NO₂.⁶—The reactions with NO₂ and NO were not first oxidation experiments performed, but proved to be the most interesting and are described more fully. The reaction threshold lies at about 450° with about a constant product distribution obtainable up to about 650° . After a series of preliminary experiments had established that a major product from C₈F₁₇SO₂F and NO₂ was C₇-F₁₅COF plus a little C₆F₁₃COF, the effects of certain variables on the yields of acid fluorides were studied in more detail. The variables studied were NO₂: C₈F₁₆SO₂F mole ratio, temperature, contact time and reactor material.

At the optimum tube temperature of 550° and a contact time of 15 to 20 seconds, it was found that

⁶⁸, 968 (1946).

⁽⁴⁾ J. D. Park, A. F. Benning, F. B. Downing, J. F. Laucius and R. C. McHarness, Ind. Eng. Chem., 39, 359 (1947).

⁽⁵⁾ I. Auerbach, F. H. Verhoek and A. J., Henne, THIS JOURNAL, 72, 299 (1950).

⁽⁶⁾ See W. A. Severson and T. J. Brice, U. S. Patent 2,765,326, October 2, 1956.

the yield of acid fluoride increased as the NO₂: $C_8F_{17}SO_2F$ mole ratio was increased from 1:1 to about 3.5:1 to 4:1 and then leveled off (at about 70% R_fCOF) with only a gradual decrease as the ratio is increased to about 7:1. When NO was used, a NO:C₈F₁₇SO₂F mole ratio somewhat in excess of 1:1 gave better yields than lower mole ratios, although the NO reaction was not studied as thoroughly as the NO_2 reaction. NO_2 is the preferred reactant since it is inexpensive and readily available as compared to NO, and, in addition, gave generally better yields of R₁COF. The material of construction of the tube did not appear to be important in these experiments as long as it was a resistant metal tube. The need to maintain NO₂: $R_1CF_2SO_2F$ ratios above 1:1 is at least partly due to the reaction of one mole of NO₂ with \cdot SO₂F to form nitrosyl fluorosulfonate, NOSO3F.

At the temperatures involved in these experiments, appreciable dissociation of the NO_2 to NOand O_2 must have occurred. However, the reaction with the nitrogen oxide (either NO_2 or NO) is evidently so much more rapid than the reaction with oxygen that little decomposition of the fluorocarbon occurs. Reaction with oxygen leads to complete destruction of the fluorocarbon chain; this reaction is discussed later.

The reaction is considered to be a free radical reaction with the initial step a dissociation of the fluorocarbon sulfonyl fluoride into R_fCF_2 and $\cdot SO_2F$ radicals. The R_fCF_2 radical then interacts with NO₂ (or perhaps NO) with the formation of R_fCOF . In the process, an oxygen atom is transferred to the fluorocarbon group. The formation of a cyclic intermediate which can rearrange to the final product is considered possible. The $\cdot SO_2F$ group is converted to nitrosyl fluorosulfonate, NOSO₃F, which was isolated in high yield. Possible reaction steps are summarized as follows, using $C_3F_{rT}SO_2F$ as an example

$$\begin{array}{ccc} C_7F_{15}CF_2SO_2F \longrightarrow C_7F_{15}CF_2\cdot + \cdot SO_2F & (1) \\ C_7F_{15}CF_2\cdot + NO_2 \longrightarrow C_7F_{15}COF + (NOF) & (2) \\ \cdot SO_2F + C_7F_{15}CF_2SO_2F \longrightarrow C_7F_{15}CF_2\cdot + (SO_2F)_2 & (3) \end{array}$$

$$(\mathrm{SO}_2\mathrm{F})_2 + 2\mathrm{NO}_2 \longrightarrow 2\mathrm{NOSO}_3\mathrm{F} \cdot \tag{4}$$

The choice of reaction 1 as the initial step is based partly on the observation that the NO₂ reaction becomes detectable at essentially the same temperature as the thermal decomposition of C₈- $F_{17}SO_2F$ and it may reasonably be expected to be initiated in the same manner. In the thermal decomposition, an initial C–S bond cleavage is very probable. An alternate to step 3 would be the reaction 3a

NOF +
$$C_8F_{17}SO_2F \longrightarrow C_8F_{17'} + NO + SO_2F_2$$
 (3a)

However, SO_2F_2 which is stable and relatively inert, was not detected so this possibility was not considered further. Attempts to isolate and identify NOF were unsuccessful, so its presence was not established. However, NOF, although stable, is very reactive and easily could have been destroyed. The fate of the F atom removed from the CF₂ groups is thus not known with certainty. Steps 3 and 4 provide a route to the NOSO₃F which is one of the actual products of the reaction found in high yield. The mechanism by which reaction 2 occurs, and specifically how the oxygen atom becomes attached to carbon, is of interest. One possibility is that an NO_2 molecule attacks the fluorocarbon radical to form a C–O bond rather than a C–N bond and that rearrangement occurs through a cyclic intermediate to form the final products

$$\begin{array}{c} C_{7}F_{15}CF_{2} \cdot \\ + \\ NO_{2} \end{array} \longrightarrow \begin{bmatrix} F & CO \\ | \downarrow \\ C_{7}F_{15}C & O \\ F \end{bmatrix} \longrightarrow \begin{bmatrix} C_{7}F_{15}COF \\ + \\ NOF \end{bmatrix}$$
(2)

In reactions of NO_2 with $C_8F_{17}SO_2F$, it was observed that the $C_7F_{16}COF:C_6F_{18}COF$ ratio was usually about 3:1, although still higher ratios were also obtained. Loss of one carbon atom to form the next lower free radical can be accounted for by a mechanism suggested by Barr and Haszeldine.⁷

$${}_{7}F_{15}CF_{2'} + NO_{2} \longrightarrow C_{7}F_{15}CF_{2}ONO \longrightarrow \\ C_{7}F_{15}CF_{2}O \cdot + NO \quad (5) \\ C_{7}F_{15}CF_{2}O \cdot \longrightarrow C_{7}F_{15'} + COF_{2} \quad (6)$$

The $C_6F_{13}CF_2$ radical then reacts with NO₂ via step 2 to form $C_6F_{13}COF$.

Reaction of R_fSO_2F with Oxygen.—The fluorocarbon sulfonyl fluorides appear not to react with oxygen (or air) below a threshold temperature of about 450° . Above this temperature, reaction proceeds with great rapidity and violence, resulting in destruction of the fluorocarbon chain. The product is chiefly COF₂ with CO₂ and SOF₂ also identified. Intermediate oxidation products were not found.

Sulfur Trioxide.—Sulfur trioxide caused burning of the fluorocarbon chain of $C_8F_{17}SO_2F$ to COF_2 at 550°. At this temperature, SO₃ is appreciably dissociated to SO₂ and oxygen; it may be that the oxygen so formed is responsible for the reaction observed.

Sulfur Dioxide.—The products of the pyrolysis of $C_8F_{17}SO_2F$ in the presence of SO_2 were essentially the same as those obtained when SO_2 was absent.

Oxidation of Fluorocarbon Derivatives Containing-CF₂H Groups.—In the course of the study of the chemistry of these fluorocarbon derivatives, it was found that reaction of R_fCF₂H simultaneously with chlorine or bromine and NO2 gave good yields of carboxylic acid fluorides having the structure R_fCOF. The product usually was isolated as the acid, although in one case the acid fluoride was recovered as such. In this reaction, it is necessary to have both NO_2 and the halogen present; in the absence of halogen, NO_2 does not react with R_{f} - CF_2H at the temperatures used, and the halogen (X_2) alone simply yields the $R_f CF_2 X$ derivative. Compounds such as NO₂Cl and NO₂Br should also be useful since they decompose at the temperatures used to give Cl_2 or Br_2 and NO_2 . The process consists simply of passing a gaseous mixture of the fluorinated starting compound, NO2 and Cl2 (or Br₂) through an empty tube (usually nickel) which is maintained at a temperature of the order of 500 to 650°. Contact times of the order of 10 to 15 seconds were used. The minimum amount of reactant theoretically needed is one mole of NO2 per mole of fluorinated starting compound. However, it is best to use an excess of NO2 and of chlo-

(7) D. A. Barr and R. N. Haszeldine, J. Chem. Soc., 3416 (1936).

rine (these are the preferred reactants). Mole ratios of about 1:3:2 for fluorinated starting compound, nitrogen dioxide and chlorine, respectively, gave good results.

The reaction is believed to proceed by a free radical chain mechanism; one possibility is illustrated for $C_7F_{15}H$.

$$\begin{array}{ccc} Cl_2 \longrightarrow 2Cl \cdot & (10) \\ C_6F_{13}CF_2H + Cl \cdot \longrightarrow C_6F_{13}CF_2 \cdot + HCl & (11) \\ C_6F_{13}CF_2 \cdot + NO_2 \longrightarrow C_6F_{13}COF + NOF & (12) \\ [NOF] + HCl \longrightarrow HF + NO + \cdot Cl & or & (13) \\ [NOF] + C_6H_{13}CF_2H \longrightarrow \end{array}$$

$$C_6F_{13}CF_{2}$$
 + HF + NO (13a)

The critical point in the reaction process occurs at step 12; in the absence of NO_2 , an alternate step (12a) would occur to produce the fluorocarbon chloride

$$C_{6}F_{13}CF_{2} + Cl_{2} \longrightarrow C_{6}F_{13}CF_{2}Cl + \cdot Cl \quad (12a)$$

Evidently NO_2 has no favorable reaction path by which it can attack the fluorocarbon hydride, but once the fluorocarbon radical is formed by hydrogen abstraction, reaction with NO_2 is by far the fastest reaction that can occur. Experimentally, no fluorocarbon chlorides (or bromides) were found, an illustration of the dominance of the NO_2 reaction. Other experiments showed that R_fCF₂Cl does not react with NO_2 under the conditions of these reactions and is therefore not an intermediate. Fluorocarbon bromides do react with NO_2 to form acid fluorides; however, the NO₂ reaction is overwhelmingly faster than the chlorination reaction, and it seems likely that similar relative rates of reaction would exist in the bromine system so that fluorocarbon bromides probably are not intermediates. The mechanism of the reaction of the fluorocarbon radical with NO_2 was discussed earlier.

Steps 13 and 13a represent possible means by which a chain reaction could proceed; then steps 11, 12 and 13 or 12 and 13a constitute the chain steps.

As mentioned above, compounds of the class $Cl(CF_2)_n CF_2 H$ can be converted to $Cl(CF_2)_n COF$ and these in turn to the free acids and other derivatives.

The product as found is a mixture of acid and acid fluoride, suggesting that water is formed at some stage and hydrolyzes the initial acid fluoride. This possibility would alter some steps of the mechanism but not the essentials.

Two ω -chloroperfluoroalkane carboxylic acids prepared are Cl(CF₂)₅CO₂H and Cl(CF₂)₇CO₂H, obtained from Cl(CF₂)₅CF₂H and Cl(CF₂)₇CF₂H, respectively. These acids are believed to be new compounds; some physical properties are given in the Experimental section.

Chlorine-sensitized oxidation reactions, including the oxidation of highly halogenated compounds, are well known. For example, the chlorine-sensitized photo-oxidation (with oxygen) of CCl₃CCl₂H to produce largely CCl₃COCl has been studied by Schumacher and Thurauf⁸; they postulate that a CCl₃CCl₂· radical is formed by hydrogen abstraction by a chlorine atom and that this radical then

(8) H. J. Schumacher and W. Thurauf, Z. physik. Chem., A189, 183 (1941).

reacts with an oxygen molecule to form, eventually, CCl₃COCl.

Haszeldine and Nyman⁹ produced CF_3CO_2H by the chlorine-sensitized photochemical oxidation of CF_3CH_2Cl or CF_3CHCl_2 . A similar reaction mechanism was postulated.

In the present case, an oxidizing agent, NO_2 , which has been shown to have controlled reactivity under conditions similar to those where oxygen does not (see oxidation of R_1SO_2F), has been used in place of oxygen and has given good results.

Oxidation of Fluorocarbon Derivatives Containing CF₂X Groups.—Experiments on the reactions of compounds of the type R_fCF_2X ($R_f =$ perfluorocarbon group, X = Cl, Br, I) with NO₂ were carried out. It was found that R_fCF_2Cl did not react up to 590°, R_fCF_2Br does react partially at 600°, and that R_fCF_2I reacts smoothly and completely at 550°.

The reactions of $R_f CF_2 Br$ and $R_f CF_2 I$ with NO_2 yield $R_f COF$ in both instances. One possible mechanism for the reaction is

$$\begin{array}{l} R_{f}CF_{2}Br \ (or \ I) \longrightarrow R_{f}CF_{2} \cdot + Br \ (or \ I) & (14) \\ R_{f}CF_{2} \cdot + NO_{2} \longrightarrow R_{f}COF + (NOF) & (15) \end{array}$$

A possible mechanism for step 15 was discussed earlier.

The reaction of R_fCF_2I with NO in the presence of mercury and ultraviolet light has been found to yield the nitroso compounds, $R_fCF_2NO.^{10}$

Experimental

General Procedure.—The reactor for most experiments was an inclined empty nickel pipe $1'' \times 21''$ heated by a 13'' electric furnace. Temperatures were measured by chromelalumel thermocouples embedded in the pipe halfway along the heated zone. Gases were metered through calibrated flowmeters. The perfluoroalkanesulfonyl fluorides (or other fluorocarbon derivatives) in liquid form were added to the gas stream from a calibrated constant-flow dropping buret and vaporized to provide the gaseous charging stock which was fed in at the upper end of the reactor. The system was purged with nitrogen before and after each experiment.

Products were collected in two traps; the first was cooled by ice, the second by liquid air. All experiments were conducted at atmospheric pressure. Contact times were calculated on the assumption that the reaction zone was that portion of the tube where the wall temperature was above 475°. The products from $R_1CF_2SO_2F$ and NO_2 consisted of (1) the crude acid fluorides mixed with small amounts of inert fluorocarbon product, (2) solid NOSO₃F, sometimes mixed with a little tube corrosion product and (3) low boiling gases.

(3) low boiling gases. **Reaction** of $C_8F_{17}SO_2F$ with NO₂.—The general procedure was used with a center wall temperature of 550°. The reactants, 11 g. of NO₂ and 30 g. of $C_8F_{17}SO_2F$ (a mole ratio of 4:1), were fed to the reactor over a 24-minute period, contact time, 16 seconds; 23.8 g. of product was collected in an ice-cooled trap, stabilized to 40° and then hydrolyzed with 150 ml. of cold water. Sufficient concentrated H₂SO₄ was added to form a 20 wt. % aqueous solution. Then 100 ml. of c-C₆F₁₂O, an inert volatile cyclic fluorocarbon ether, was added to extract the fluorocarbon acids out of the aqueous phase. The c-C₆F₁₂O phase was separated, a second extracts distilled. After removal of c-C₆F₁₂O, there was obtained 17.5 g. (71%) of mixed fluorocarbon acids. Distillation yielded 13.4 g. (54%) of C₇F₁₅CO₂H, b.p. 185-189°, added to Cold for C E COLH trawt equip. 414. Found

Anal. Calcd. for $C_7F_{15}CO_2H$: neut. equiv., 414. Found: neut. equiv., 414.

⁽⁹⁾ R. N. Haszeldine and F. Nyman, Proc. Chem. Soc., 46 (1957).

⁽¹⁰⁾ J. Banus, J. Chem. Soc., 3755 (1953); R. N. Haszeldine, ibid., 2075 (1953).

The $C_7F_{15}CO_2H$ was converted to the methyl ester, b.p. 159–160°, $n^{25}{\rm D}$ 1.3026.

Anal. Calcd. for $C_9F_{18}H_9O_2$: C, 25.2; F, 66.5. Found: C, 25.4; F, 66.5.

A number of variations on the procedure were made in experiments designed to provide information about specific points. (1) Identification of the primary product as the acid fluoride: The products in the ice-cooled trap were distilled, and the acid fluorides separated as such. Experiments also showed that about 15% of the $C_8F_{17}SO_2F$ was converted to high boiling inert fluorocarbons including at least some C_8F_{18} . This might result from the reaction $C_8F_{17} + NOF \rightarrow C_8F_{18} + NO.$ (2) Identification of NOSO₃F: NOSO₃F is a white solid

(2) Identification of NOSO₃F: NOSO₃F is a white solid and was found largely in the cooler portions of the exit end of the reactor. In one experiment NOSO₃F corresponding to 61% of the sulfur in the $C_8F_{17}SO_2F$ was collected in pure form; additional NOSO₃F contaminated with nickel salts also was found. The relatively pure NOSO₂F was analyzed.

Anal. Calcd. for NOSO₃F: S, 24.8; F, 14.7. Found: S, 24.7; F, 14.0.

(3) Composition of the low boiling products: These constituted only a small part of the total product, and were mixed with excess NO₂ so that separation was difficult. Examination showed that the major portion of the low boilers was hydrolyzed by NaOH; the resulting sodium salts were shown by infrared analysis to contain perfluorocarboxylic acid salts, probably CF₃CO₂Na. The portion inert to base was a mixture of CF₄, C₂F₆, C₃F₈ and C₄F₁₀. A separate analysis showed that only 1.7% of the total sulfur was present in the low boilers in a readily hydrolyzable form.

Reactions of $C_6F_{11}SO_2F$, $C_{10}F_{21}SO_2F$ and CF_3SO_2F with NO_2 .— $C_6F_{11}SO_2F$ and $C_{10}F_{21}SO_2F$ and C_8SO_2F with NO_2 .— $C_6F_{11}SO_2F$ and $C_{10}F_{21}SO_2F$ were found to react normally with NO_2 to yield C_4F_9COF and $C_9F_{19}COF$, respectively. CF_3SO_2F is thermally more stable than longer chain alkanesulfonyl fluorides and a temperature of 600° instead of the usual 550° was needed to effect complete conversion. The CF_3 - group was converted to the expected COF_2 plus a little CO_2 . Reaction of $C_8F_{17}SO_2F$ with NO.—The charging stock consisted of 10.8 g. of $C_7F_{16}CF_2SO_2F$ and 4.4 g. of NO, fed

Reaction of $C_8F_{17}SO_2F$ with NO.—The charging stock consisted of 10.8 g. of $C_7F_{16}CF_2SO_2F$ and 4.4 g. of NO, fed into the reactor during a period of approximately 15 minutes. The temperature was approximately 550°. From the liquid collected in the ice-cooled trap, there was recovered by fractional distillation 3.1 g. of crude $C_7F_{15}COF$ (yield of 37%).

Reaction of $C_8F_{17}SO_2F$ with O_2 .—Reaction of oxygen with $C_8F_{17}SO_2F$ (mole ratio $O_2:C_8F_{17}SO_2F = 2:1$) at 540° gave complete fragmentation with COF₂ the chief product and smaller amounts of CO₂ and SOF₂. Reaction proceeds at 480° but not at 440°. Thermal decomposition in the absence of O_2 starts at about 450°.

Reaction of $C_8F_{17}SO_2F$ with SO₂ and with SO₃.— C_8F_{17} -SO₂F and SO₂ (1:3.3 mole ratio) were passed through the reaction tube at 550°; the products were essentially the same as those obtained by thermal decomposition of C_8F_{17} -SO₂F. $C_8F_{17}SO_2F$ and SO₃ (1:4.5 mole ratio) at 555° gave COF₂ and CO₂ but no R_fCOF.

The Reaction of $C_7F_{18}H$ with NO₂ and Cl₂.—The reactor was a 1" \times 21" empty nickel pipe mounted in an inclined position in a 13" electric tube furnace. The temperature was measured with a thermocouple embedded in the pipe midway along the heated zone. The NO₂ and Cl₂ were metered at controlled rates through flowmeters, and the C₇F₁₈H in liquid form was continuously mixed into the gas stream from a calibrated buret and vaporized to form the gaseous mixture charging stock, which was fed in through a tube connected to the upper end of the reactor. The exit end of the reactor pipe was connected to a trap cooled in ice, and the volatile products passing from the latter were condensed in a liquid air-cooled trap. The experiment was conducted at atmospheric pressure.

The $C_7F_{15}H$ was prepared by the reaction of $C_7F_{15}CO_2Na$ with ethylene glycol; the $C_7F_{15}H$ had b.p. 93–94°, $n^{25}D$ 1.2697.¹¹

(11) (a) For the general method, see I. Auerbach, F. H. Verhoek, and A. L. Henne, THIS JOURNAL, 72, 299 (1950); (b) A. F. Benning and J. D. Park, U. S. Patent 2,490,764, report b.p. 96-97, d²³43 1,725.

With the reactor at a wall temperature of 600°, a mixture of 24.7 g. of $C_7F_{16}H$, 6.6 g. of NO₂ and 5.2 g. of Cl₂ (mole ratio $C_7F_{16}H$:NO₂:Cl₂ = 1:2:1) was passed through the reactor in 15 minutes; contact time, 11 seconds. The product in the ice trap, 17.8 g., was hydrolyzed in 100 g. of cold water, and 25 ml. of concentrated H₂SO₄ added which caused the separation of a lower phase containing the fluorocarbon acid. The aqueous phase was extracted with 125 ml. of c-C₆F₁₂O, a volatile inert fluorocarbon cyclic ether in which fluorocarbon acids are soluble. The layers were separated and the C₆F₁₃CO₂H recovered from the C₆F₁₂O phase by distillation. The C₆F₁₃CO₂H, 11.1 g. (45.6%) was isolated as a fraction boiling at 170-175° (740 mm.). The sample contained 0.06 mg. F⁻/g., <0.1% H₂O.

Anal. Calcd. for $C_6H_{13}CO_2H$: neut. equiv., 364. Found: neut. equiv., 361.

The Reaction of $C_7F_{15}H$ with NO₂ and Br_2 .—Using the same equipment as before with a reactor temperature of 600° and a contact time of 12 seconds, 10.1 g. of $C_7F_{15}H$, 3.7 g. of NO₂ and 7.0 g. of Br_2 (mole ratio of $C_7F_{15}H$:NO₂: $Br_2 \cong 1:3:2$) were allowed to react. The products boiling above room temperature (8.3 g.) were shown by infrared analysis to consist of mostly $C_6F_{13}COOH$ with a small amount of $C_7F_{15}H$ and unknown material.

The Reactions of $Cl(CF_2)_6H$ and $Cl(CF_2)_8H$ with NO₂ and Cl₂.—The same equipment and procedure as before was used. From 25.2 g. of $Cl(CF_2)_6H$ there was obtained a 72% yield (100% conversion) of a mixture of $Cl(CF_2)_6COF$ and $Cl(CF_2)_6CO_2H$. The acid fluoride was recovered as such by distillation, b.p. 81° (740 mm.). The acid was freed of fluoride ion and distilled. $Cl(CF_2)_6CO_2H$ has b.p. 180- 183° (740 mm.), $n^{22}D$ 1.3280. The sample contained 0.29 mg. $F^-/g.$, <0.1% H₂O.

Anal. Calcd. for $Cl(CF_2)_5CO_2H$: neut. equiv., 330; Cl, 10.8. Found: neut. equiv., 326; Cl, 11.2.

Cl(CF₂)₇CO₂H was prepared in a similar manner from $Cl(CF_2)_8H$, NO₂ and Cl₂. From 5.6 g. of $Cl(CF_2)_8H$ there was obtained a 40% yield (100% conversion) of $Cl(CF_2)_7$ -COOH. The acid is a solid at room temperature but no reliable melting point could be obtained.

Anal. Calcd. for $C_8F_{14}ClHO_2$: neut. equiv., 430.5; Cl, 8.1. Found: neut. equiv., 428; Cl, 8.4.

Reaction of $C_7F_{1b}I$ with NO₂.—The $C_7F_{1b}I$ used was prepared by the reaction of $C_7F_{1b}CO_2Ag$ with I₃; b.p. 130– 133°, $n^{2b}D$ 1.3280.¹² The experiment was carried out by passing 25.1 g. of $C_7F_{1b}I$ and NO₂ in a 1:3.2 mole ratio through the inclined 1'' \times 21'' nickel tube heated by a 13'' electric furnace. The wall temperature was 550°; contact time, 16 seconds. There was obtained, after hydrolysis of the initial acid fluoride product, 10.9 g. (59%) of C₆F₁₃-CO₂H, b.p. 170–175°.

Reaction of $C_7F_{15}Br$ with NO₂.—The $C_7F_{15}Br$ used had a boiling point of 120–125° and a refractive index $(n^{26}D)$ of 1.2998. The experiment was carried out by passing 4.9 g. of $C_7F_{15}Br$ and NO₂ in a 1:5.4 mole ratio through the nickel tube reactor heated to a wall temperature of 600°. The products boiling above 40° (3.5 g.) were shown by infrared analysis to contain largely unreacted $C_7F_{15}Br$ and a medium amount of $C_6F_{13}COF$.

Reaction of $C_8F_{17}C0$ with NO₂.—The $C_8F_{17}C1$ used had a boiling point of $128-131^{\circ}$ and a refractive index ($n^{26}D$) of 1.2902. A total of 9.3 g. of $C_8F_{17}C1$ and NO₂ in a 1:3.9 mole ratio was passed through a nickel tube heated to a wall temperature of 590°. The product boiling above 40° (8.3 g.) was shown by infrared analysis to be unreacted $C_8F_{17}C1$. The recovery of starting material was 89%; no R_fCOF or R_fCO₂H was detected.

Acknowledgment.—We wish to express our appreciation to R. I. Coon for assistance with many of the NO_2 experiments. and to W. E. Keiser, J. J. McBrady, A. Duncan and H. E. Freier for the analytical results.

St. Paul 6, Minn.

⁽¹²⁾ For general process, see J. H. Simons and T. J. Brice, U. S. Patent 2,554,219, May 22, 1951, or A. L. Henne and W. G. Finnegan, THIS JOURNAL, **72**, 3806 (1950)